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SUMMARY

The lubrication theory is extended for transient free-surface �ow of a viscous �uid inside three-
dimensional cavities of general symmetric shape but of small thickness. The problem is closely related
to the �lling stage during the injection molding process. The moving domain is mapped onto a rect-
angular domain at each time step of the computation. A modi�ed pressure is introduced, which in
this case is governed by the Laplace’s equation, and it is expanded in a Fourier series along the �ow
direction. The expansion coe�cients are obtained using the �nite-di�erence method. This approach is
valid for simple and complex cavities as illustrated for the cases of a �at plate and a curved plate.
Only a few modes are needed to secure convergence in general. It is found that the �ow behaviour is
strongly in�uenced by the shape of the initial �uid domain, the shape of the cavity, cavity thickness,
and the inlet �ow. Copyright ? 2002 John Wiley & Sons, Ltd.

1. INTRODUCTION

The modelling and simulation of free-surface cavity �ow have been the object of considerable
interest over the last two decades. The interest in this area of research activity is largely due to
the need for new computational algorithms that assist in the design and fabrication of plastic
and metal parts as encountered in the processing industry, particularly in injection molding and
die casting. Modelling of the �ow in these processes represent several major challenges since
it is inherently transient, non-isothermal, and includes a free surface moving through cavities
of highly irregular geometry. Despite the continuous development of new solution techniques,
and the advent of powerful computational platforms, the simulation of free-surface �ow inside
a cavity remains challenging. For transient free-surface �ow, the presence of geometrical non-
linearities, coupled to material non-linearities, such as inertia (die casting) and non-Newtonian
(injection molding) e�ects, make the moving-domain problem di�cult to solve and understand.

∗Correspondence to: R. E. Khayat, Department of Mechanical and Materials Engineering, Faculty of Engineering
Science, The University of Western Ontario, London, Ont., Canada N6A 5B9.

†E-mail: rkhayat@eng.uwo.ca

Contract=grant sponsor: National Sciences and Engineering Council.

Received January 2001
Copyright ? 2002 John Wiley & Sons, Ltd. Revised November 2001



720 S. X. ZHANG AND R. E. KHAYAT

Due to limited computational resources, the three-dimensional �ow problem has customarily
been simpli�ed to a two-dimensional problem, based on the observation of Hele-Shaw [1–3].
The method is closely related to the lubrication or shallow-water theory for Newtonian �ow
[4]. In this approach, the cavity is assumed to be thin, and out of plane �ows are neglected.
Richardson [5] was the �rst to propose this method for molding �ow. He examined Newto-
nian, isothermal �ow inside cavities of simple geometry. Three decades later, the lubrication
assumption remains the basis for the simulation of free-surface �ow of thin �lms [6–8]. Var-
ious �ow con�gurations were analyzed: Kamal and Kenig [9], Winter [10], and Berger and
Gogos [11] have examined the case of radial �ow from a central injection point. White [12],
Broyer et al. [13], and Van Wijngaarden et al. [14], among others, have analysed the �ow
between parallel and non-parallel plates. Williams and Lord [15] studied the �ow in circular
channels.
There have been several notable solution techniques for the �ow inside cavities of complex

shape. In one method, the mold geometry is laid �at and then described through a series of
simpler geometries: radial �ow, �ow between parallel plates and �ow in circular channels
[16; 17]. The �nite-element method has been used to simulate the Hele-Shaw �ow as applied
to injection and compression mold �lling [18; 19]. Given the moving boundaries involved, it is
necessary to generate a new mesh after each successive time step. The cost and inconvenience
of �nite element remeshing has led to the use of the boundary element techniques in general
cavity �ow [20; 21], and the Hele-Shaw �ow in particular [22; 23]. While the BEM has
obvious advantages over conventional domain methods for the treatment of moving-boundary
problems, it su�ers from severe drawbacks, the most notable of which is its lack of capability
to handle non-linearities such as inertia and non-Newtonian e�ects, or even a cavity of variable
thickness. Hence, the simulation of transient free-surface �ows remains challenging since, on
the one hand, conventional domain methods are inadequate for adaptive meshing, and, on
the other hand, integral methods such as the BEM, which can handle more easily adaptive
meshing, cannot incorporate non-linearities from the governing equations.
In the present paper, the di�culties with conventional methods are addressed for the �ow

inside cavities of general shape but of small thickness. A hybrid Lagrangian=Eulerian method
is proposed, which consists of mapping the irregular moving domain, at each time step, onto
a �xed rectangular domain. The �ow is expanded in Fourier series in the transverse direction,
and the �nite-di�erence method is used to obtain the expansion coe�cients. The method is
used to obtain the three-dimensional �ow �eld inside a thin cavity of arbitrary shape, and a
cavity of variable thickness. This corresponds to the solution of a large class of free-surface
�ow problems, with close relevance to polymer processing. The �ow is typically encountered
during the �lling stage inside a thin cavity as in injection molding. The lubrication assumption
is adopted to derive the resultant equations for a Newtonian �uid, averaged over the thickness
of the cavity. The in�uence of the initial domain, and cavity thickness are particularly explored.
The cavity is assumed to be symmetric with straight lateral boundaries.

2. GENERAL FORMULATION

In this section, the basic assumptions for the lubrication are �rst brie�y reviewed for viscous
�uids. The theory is then extended to include the transient-free-surface �ow inside thin three-
dimensional cavities.
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FREE-SURFACE CAVITY FLOW 721

Figure 1. Schematic illustrating the transient free-surface �ow inside a cavity induced by the
imposed �ow at the source boundary, �s.

2.1. General lubrication theory and �ow domain

Consider an incompressible Newtonian �uid of viscosity �. Inertia e�ects are assumed negli-
gible. The lubrication assumption, which is the hydrodynamic analogue of thin-shell theory,
is applied to determine the �ow. In most lubrication �lms the thickness of the �lm is small
compared with its lateral dimensions. Properly handled, this observation can be used to elim-
inate from the hydrodynamic equations and boundary conditions the dependence upon one
of the three spatial variables. The continuity equation is integrated across the �lm and the
Navier–Stokes equation is used to evaluate the quantities appearing as integrands. The con-
servation equations are formulated in the narrow-gap limit. These equations are �rst cast in
terms of dimensionless variables. Typically, in thin-cavity �ow, there are three characteristic
lengths. Two length scales, L1 and L2, lie along the lateral directions (length and width). A
third length scale, H , re�ects the order of magnitude of the thickness of the cavity in the
depthwise direction. It is usually assumed that L1 and L2 are large length scales, of the same
order, L, say. In this case, L and H will be taken as the reference length and thickness in the
horizontal and depthwise directions, respectively, with (x; y) and z being the corresponding
co-ordinates. The velocity components, (ux; uy) and uz are scaled by V and �V , respectively,
where V is a reference velocity, and �=H=L is the typical aspect ratio in the problem. The
time, t, is scaled by L=V , and the pressure, p, is scaled by �V=L�2. The position vector of a
general point in space is denoted by r(x; y; z), and its projection in the (x; y) plane is denoted
by x(x; y).
Figure 1 illustrates schematically the general �ow and notations used. The �gure shows a

step of the �lling stage of a thin cavity of general shape. If terms of O(�2) and higher are
excluded, and in the absence of inertia, the conservation equations reduce to the following
equation for the pressure [4]:

(h3p; x);x+(h3p;y );y =0 (1)

where h= h(x) is the prescribed dimensionless thickness of the cavity. It is important to ob-
serve that the pressure, p(x; t), does not vary with the depthwise direction. This
is in accord with the major hypothesis of lubrication theory. The velocity components are
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given by

u�(x; y; z; t)=
p;� (x; y; t)

2
[z − h1(x; y)][z − h2(x; y)]; �= x; y (2)

where h1(x) and h2(x) are the heights of the lower and upper cavity surfaces, respectively
(see Figure 1). Note that h(x)= h2(x)−h1(x). If the thickness is constant, then the pressure is
governed by Laplace’s equation. The problem thus reduces to the determination of the scalar
variable, p(x; t). This is a quasi-steady problem since the time dependence is not explicit in
the pressure equation. The solution will thus be sought in the (x; y) plane. Either the pressure
or its normal directional derivative, q= n · ∇p, is determined, where n is the normal vector.

2.2. Boundary and initial conditions

Regarding the boundary conditions, the lubrication formulation does not accommodate adher-
ence conditions at the lateral walls. In the reduced momentum equations in the streamwise
(x) and spanwise (y) directions, respectively, the di�usive terms u;xx+u;yy and v;xx+v;yy are
of O(�2), and are therefore neglected, leading to a reduction in the order of the equations
in the x and y directions. However, it is generally accepted that the �ow in the core region
is not in�uenced by the boundaries. Stick boundary conditions can only be applied at the
bottom and upper rigid cavity surfaces. In this case, only the no-penetration condition applies
along the lateral walls. This assumption is not as unrealistic as it seems at �rst, since the
�ow core in a thin cavity is not signi�cantly a�ected by the �ow in the immediate vicinity
of the lateral walls. However, while this may not be entirely true for a �ow at zero Reynolds
number, inclusion of inertia makes the problem much more di�cult.
The �ow is assumed to be driven by an imposed (dimensionless) pressure gradient, q0(y; t),

at x=0, so that the general boundary condition at the entrance to the cavity is given by

q(x=0; y; t)= q0(y; t); x∈�e (3)

The pressure gradient may be either maintained �xed at all time, or adjusted according to
the �ow conditions inside the cavity (mold). A time-dependent pressure gradient corresponds
typically to the inlet condition in injection molding where the pressure rather than the �ow
rate is varied with time at the source of �uid. Although a variable pressure gradient can be
easily accommodated by the present formulation, q0 will be assumed to depend only on y.
Since the lubrication assumption can only accommodate the no-penetration conditions at the
lateral walls, then

q(x; t)= n(x; t) · ∇p(x; t)=0; x∈�w(t) (4)

where n is the unit normal to �w(t).
At the front (free surface) the imposition of a suitable dynamic condition is not obvious

for thin-cavity �ow. It is clear that for the general three-dimensional �ow, and in the absence
of surface tension e�ects, a zero-traction condition must apply at the front. To leading order,
the dynamic condition reduces to the vanishing of the pressure at the free surface [4]:

P(x; t)=0; x∈�f(t) (5)

Finally, this section is concluded with some remarks on the kinematic condition at the
free-surface, which is the least obvious among the boundary conditions to implement. In a
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Lagrangian representation, such as the present formulation, the moving boundary is assumed
to deform with the �uid velocity, such that the evolution of �f(t) is governed by the equation

dr
dt
= u(r; t); r∈�f(t) (6)

Although easy to implement, the resulting scheme based on Equation (6) tends to sweep
points on the moving boundary along the tangent to the moving boundary, even if only small
shape changes take place. Consequently, frequent redistribution of the moving boundary points
or remeshing would be necessary if relation (6) is used. Alternatively, the moving boundary
can be assumed to deform point wise along the normal with the normal projection of the
�uid velocity at the moving boundary. This method keeps the points evenly distributed on
the moving boundary. The alternative kinematic boundary condition is obtained by taking
the scalar product of Equation (6) with the vector n(r; t) to the front, �f(t), and noting that
n · n=1, one has n · (dr=dt)= n · n(n · u). An equivalent solution of this equation is obtained
from the following kinematic condition:

dr
dt
= n(r; t)[u(r; t) · n(r; t)]; r∈�f(t) (7)

In this case, the free-surface deforms only in the normal direction. Although condition (7)
requires the calculation of the normal vector at the free-surface, no remeshing of the free-
surface points is needed in this case since the points remain evenly distributed on the free
surface. Remeshing may still be necessary in case of large element distortion. Moreover,
condition (7) is particularly advantageous to use in the present context. However, Equation
(6) can be more advantageous because of simplicity of implementation. In the current study,
the di�culty of node sweeping will be easily circumvented as will be observed below.

3. SOLUTION PROCEDURE

The lubrication problem is solved by �rst mapping the �ow domain onto a rectangular domain.
A modi�ed pressure is introduced, which reduces to the pressure when the cavity thickness
is constant. The method of Galerkin projection is used, whereby the modi�ed pressure is
expanded in Fourier series. The expansion coe�cients are then determined by solving the
projected pressure equation.

3.1. Domain of computation and reduced problem

The domain of computation is obviously the projection �xy(t) of the physical domain �(t)
onto the (x; y) plane. For simplicity, the cavity is assumed to be straight at the entrance,
with x=0 and y∈[−1;+1], and the �ow is assumed to enter the cavity at a �ow rate that
depends only on y. Other �ow con�gurations are easily formulated. Thus, at the entrance to
the cavity, q0(y; t)=−p;x(x=0; y; t), and condition (3) becomes

p;x (x=0; y; t)=−q0(y; t) (8)

At the lateral walls, Equation (4) yields

p;y (x; y=−1; t)=p;y (x; y=+1; t)=0 (9)
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Figure 2. Mapping of the middle slice of the time-dependent physical domain in the (x; y) plane onto
the rectangular computational domain in the (�; �) plane.

Finally, let the front be represented by x=X (y; z; t), for z∈[h1; h2] and t¿0. One can then
set

p(x=X; y; t)=0 (10)

Once p(x; t) is determined from Equation (1), at a given time, t, the velocity components
are then determined. Particularly, the velocity components at the front are required in order
to determine the evolution of the front. The following form of the kinematic condition (6) is
used in this work:

Ux(y; z; t)=X;t (y; z; t) +Uy(y; z; t)X;y (y; z; t) (11)

where U�(y; z; t)= u�(x=X; y; z; t) are the velocity components at the front. It is important
to observe that the z dependence in Equation (11) is implicit, and that X is regarded as
dependent on x and y for a given z value (see next).

3.2. Domain mapping

In order to represent the modi�ed pressure, S, in series of orthonormal functions, the domain
of computation must be rectangular. For this, the physical domain (x; y)∈�xy(t) is mapped
onto the domain (�; �)∈[0; 1]× [−1; 1]. The mapping is schematically shown in Figure 2. Here
L(y; t)=X (y; z= h1+h=2; t). More speci�cally, consider the projection of the �ow, at a given
time t, in the (x; y) plane. If the width at x=0 is taken as twice the reference length, then
�xy(t)= {(x; y) | x∈[0; L]; y∈[−1; 1]}, and

�(x; y)=
x

L(y; t)
; �(x; y)=y (12)

Upon use of expressions (12), Equation (1) for the modi�ed pressure reads

[1 + (�L; �)2]p; �� +
[
2�(L; �)2 − �LL; �� + 3 h; �h

]
p; �

−2�LL; �p; �� + L2p; ��=0 (13)

subject to the following boundary conditions:

p; �(�=0; �; t)= a(�2 − 1) (14)
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where a is a positive quantity, re�ecting the strength of the incoming �ow

p(�=1; �; t)=p; �(�; �=−1; t)=p; �(�; �=+1; t)=0 (15)

The parabolic form for the pressure gradient, given by (14), is chosen somewhat arbitrarily.
Other forms are of course easily accommodated by the present formulation. In typical injection
molding operations, the pressure is maintained or known (from measurement) at the entrance
to the cavity.
The pressure is coupled to the shape of the front, L(y; t), which must be determined as part

of the solution, thus making the problem non-linear. The shape of the front in turn delimits the
domain in the (x; y) plane. Once p(x; y; t) is obtained at a given time, the horizontal velocity
components at the front are evaluated. L(y; t) is then determined by solving the kinematic,
which, in the horizontal plane, reduces to

U (y; t)=L;t (y; t) + V (y; t)L;y (y; t) (16)

where U (y; t)=Ux(y; z=(h2 − h1)=2; t) and V (y; t)=Uy(y; z=(h2 − h1)=2; t) are the velocity
components at the front in the (x; y) plane, and L(y; t)=X (y; z=0; t).

3.3. Pressure expansion

The modi�ed pressure can be expressed as

p(�; �; t)=
∞∑
n=0
pn(�; t) cos n�� (17)

Note that expression (17) satis�es the two lateral boundary conditions (15). If the �ow is
not symmetric with respect to the x-axis, then odd modes must be included in the pressure
expansion. Obviously, a truncation level will have to be imposed, leading to a �nite number
of modes, N , in the expansion. If expression (17) is substituted into Equation (13), and the
Galerkin projection method is used, then the following recursive relation is obtained for the
pressure coe�cients:

N∑
n=0
Amnpn; �� +

N∑
n=0

Bmnpn; � +
N∑
n=0
Cmnpn=0 (18)

where m∈[1; N ], and the time-dependent coe�cient matrices are given by

Amn(�; t) = 〈cos(m��) cos(n��)[1 + (�L; �)2]〉

Bmn(�; t) =
〈
cos(m��)

{[
2�(L; �)2 − �LL; �� + 3 h; �h

]
cos(n��) + 2n�LL; � sin(n��)

}〉

Cmn(t) = −n2�2〈L2 cos(n��) cos(m��)〉

(19)

where the notation 〈 〉= ∫ 1
−1 d� is used. In this case, the Galerkin projection consists of

multiplying Equation (13) by cos(m��) for m∈[1; N ], and integrating it with respect to �
from −1 to 1, after substituting expression (17). The boundary conditions for system (18)
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are deduced from conditions (14) and (15), leading to

pn(�=1; t) = 0 (20)

pn; �(�=0; t) = a〈(�2 − 1) cos(n��)〉 (21)

System (18) is a set of N partial di�erential equations in � and t. However, since time is not
explicitly apparent, the system can be regarded as a set of ordinary di�erential equations in
� at a given time, t. This is a two-point boundary-value problem. The equations are solved
using a variable order, variable step size �nite-di�erence method in �, with deferred corrections
(IMSL-DBVPFD). Once Equation (18) is solved, p(x; t) can be determined over the domain
�xy(t), in particular along the front x=L(y; t), which in turn allows the determination of the
velocity at the front. Similarly to the pressure expansion (17), L(�; t), is expanded as

L(�; t)=
N∑
n=0
Ln(t) cos n�� (22)

The Galerkin projection is used to solve Equation (16), and the coe�cients Ln(t) are governed
by following set of coupled ODEs:

dLm(t)
dt

=
N∑
n=0
Dmn(t)Ln(t) + Em(t); m∈[1; N ] (23)

where the coe�cients are given by

Dmn(t) = n�〈cos(m��) sin(n��)V (�; t)〉
Em(t) = 〈cos(m��)U (�; t)〉

(24)

A forward explicit �nite di�erence in time is used to solve Equation (23). The numerical
assessment of the method is covered in the next section.

4. NUMERICAL ASSESSMENT AND RESULTS

The formulation and solution procedure are now used to examine the transient free-surface
�ow inside thin cavities of general shape, of constant and variable thickness. Three �ow
con�gurations for a cavity of constant thickness are examined, namely, the �ow inside a
�at cavity with initial rectangular domain, initial parabolic domain, and the �ow inside a
curved cavity with initial rectangular domain. The in�uence of cavity thickness is examined
for a �at cavity. All results are given in terms of dimensionless quantities. The accuracy of
the results is assessed by examining the in�uence of higher-order modes. The calculations are
based on a driving pressure with a=1.

4.1. Flow inside a �at cavity with initial rectangular domain

Consider the �ow inside a �at cavity. The length and the width are taken to lie along the x
and y directions, respectively, with the x-axis lying halfway between the lateral sides of the
cavity (see Figure 2). The thickness of the cavity is assumed to be constant, so that h1 = 0
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FREE-SURFACE CAVITY FLOW 727

Figure 3. Transient �ow inside a �at plate with initial rectangular domain. The fronts are shown at
equal time intervals over a period of 20 time units. Results are based on N=3. The arrows in this and

subsequent �gures indicate the direction with time.

and h2=1. Although the �uid is �owing predominantly in the x direction, there is a strong
secondary �ow in the y direction as well. The �rst problem considered corresponds to an
initial rectangular domain occupied by the �uid. Its projection in the (x; y) plane is given
by �xy(t=0)= {(x; y) | x∈[0; 1]; y∈[−1; 1]}. Figure 3 shows the evolution of the front in the
(x; y) plane at z=0:5 between the two �at plates. The front is shown at equal intervals over
a period of 20 time units, excluding the initial con�guration for clarity. The �gure indicates
that the front remains relatively straight despite the parabolic driving pressure gradient at the
entrance x=0. It is interesting to observe that the maximum �ow at x=0 does not induce a
relatively strong maximum in the middle of the front. This is the result of the slip of the �ow
at the lateral boundaries y=±1. The �gure indicates that the spacing between two successive
fronts diminishes with time. This is of course expected since a time-independent pressure
gradient is imposed at the entrance. The results in Figure 3 are based on only three modes
(N=3) in the pressure expansion (17). The in�uence of higher-order modes is negligible as
will be concluded next.
A better quantitative assessment is possible by monitoring the time evolution of the front

tip, Xmax(t), and of the contact point, Xc(t). The convergence of the method has also been
examined. Figure 4 displays this evolution of Xmax for three truncation levels, namely, N=1; 2
and 3. The starting point, at t=0, is Xmax=1 for the front tip, corresponding to the initial
�uid domain. Although the increase in Xmax is monotonic with time, the rate of the increase
diminishes continuously with time. The in�uence of the higher-order modes is insigni�cant in
this case. In fact, the use of only one mode leads to a reasonably accurate result. Convergence
is clearly attained for N¿2. The results for N=2 and 3 are essentially the same. The �gure
indicates that the one-mode solution tends to underestimate the value of Xmax. The fast rate
of convergence is expected in the present case given the simplicity of the initial domain
and subsequent �ow. However, the rate of convergence appears to be always high, even for
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728 S. X. ZHANG AND R. E. KHAYAT

Figure 4. Evolution of the front tip position, Xmax, with time for the �ow inside a �at plate with initial
rectangular domain for three levels of truncation, N=1; 2 and 3.

Figure 5. Evolution of the contact point position, Xc, with time for the �ow inside a �at plate with
initial rectangular domain for three levels of truncation, N =1; 2 and 3.

complicated �ows as will be seen next. Similar observations are drawn when the evolution
of Xc is examined. The results are shown in Figure 5. The �gure shows, however, that the
one-mode solution tends to overestimate the value of Xc. The two- and three-mode expansions
lead to essentially the same results.
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Figure 6. Transient �ow inside a �at plate with initial parabolic domain. The fronts are shown at equal
time intervals over a period of 20 time units. Results are based on N=3.

4.2. Flow inside a �at cavity with an initial parabolic domain

Consider now the �ow corresponding to the initial parabolic domain given by �xy(t=0)=
{(x; y) | x∈[0; 0:5 − (y − 1)(y + 1)]; y∈[−1; 1]}, which is subject to the same inlet �ow at
x=0 as above. The sequence of �ow fronts is depicted in Figure 6, which shows a relatively
dominant axial �ow, leading to the straightening of the front with time. Indeed, the �uid in
the vicinity of the lateral boundaries tends to �ow faster, eventually straightening the front.
Note that the initial domain is only partly shown in the �gure for clarity. The strength of the
lateral �ow is assessed in Figure 7, where the �ow �eld is depicted after 0.1 time unit. The
fountain �ow is clearly re�ected in the �gure. However, this �ow will tend to diminish in
intensity with the �uid advancement.
As in Figure 3, the results shown in Figure 6 are based on three modes in the pressure

expansion. Convergence is attained at this level of truncation. The rate of convergence is,
however, slower in this case given the complexity of the �ow. There is a signi�cant discrep-
ancy between the one-mode and higher-mode curves, both quantitatively and qualitatively. For
N=1, there is a decrease in the rate of advancement of the front tip, similarly to the problem
with a rectangular initial domain. The inclusion of higher-order modes, however, indicates that
the tip advances at an essentially constant rate. This is depicted in Figure 8 as Xmax varies
almost linearly with time. The �gure also shows the in�uence of the time increment, �t.
Convergence is attained for �t¡0:1. The contact point between the front and lateral walls
moves at a faster rate initially as shown in Figure 9. The rate of advancement of the contact
point, dXc=dt, is larger than that of the front tip, dXmax=dt. This rate of advancement tends,
however, to decrease with time, and eventually becomes comparable to dXmax=dt. This is also
indicated in Figure 6, and is re�ected by the straightening of the front.
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Figure 7. Flow �eld at t=0:1 for the �ow inside a �at plate with initial parabolic domain.

Figure 8. Evolution of the front tip position, Xmax, with time for the �ow inside a
�at plate, with initial parabolic domain (N =3). The �gure shows the in�uence of the

time increment for the range �t∈ [0:0125; 1].

The �ow �eld at the front is further appreciated by examining the velocity vector at the
front. Figures 10 and 11 show the distributions of the axial and lateral components at the front,
U (y; t) and V (y; t), respectively. The arrow in the �gures indicates the time direction. The
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Figure 9. Evolution of the contact point position, Xc, with time for the �ow inside a �at plate, with
initial parabolic domain, for three levels of truncation (N=3). The �gure shows the in�uence of the

time increment for the range �t∈ [0:0125; 1].

Figure 10. Distribution of the axial velocity component, U (y; t), at the front for
0¡t¡10, for the �ow in Figure 6.

discrepancy between the velocity of the front tip, U (0; t), and that of the points of contact,
U (±1; t), is obvious from Figure 10, which shows that U (0; t) is less than half U (±1; t) in
the initial stages. This discrepancy decreases with time. The �gure also shows that the velocity
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Figure 11. Distribution of the lateral velocity component, V (y; t), at the front for
0¡t¡10, for the �ow in Figure 6.

tends to generally converge in the long time everywhere except near the lateral walls. The
lateral velocity component, V (y; t), is strongest initially, and is generally of the same order
of magnitude as U (y; t), as depicted from Figure 11, and is also con�rmed in Figure 7. As
expected, the lateral velocity vanishes at y=±1. The overall non-linear behaviour is further
evidenced by examining the plots in the (U;V ) plane (not shown here). The plots are closed
orbits that are similar to those emerging from dynamical systems. They tend to decrease in
the overall diameter, con�rming the weakening of the �ow with time.

4.3. Transient free-surface �ow inside a (3D) curved cavity

The results on the �ow inside a �at cavity in Figures 3 and 6 clearly illustrate the strong
in�uence of the initial domain on the ensuing �ow sequence. To this must be added the
in�uence of the inlet �ow, which can be adjusted to compensate, for instance, the loss of
�ow near the lateral walls as in Figure 6. However, this adjustment is not needed in this
case given the slip at the lateral walls, which allows the �ow at the walls to catch up with
the �ow in the middle region. In this section, the �ow in a curved three-dimensional cavity
is considered, which illustrates further the intricacies resulting from the in�uence of the inlet
�ow, the shape of the initial domain, and the slip at the lateral walls.
So consider the �ow inside the curved parabolic cavity whose mid-surface is given by

z=−4(x − 1)(x − 2)(y − 1)(y + 1), where (x; y)∈[1; 2]× [−1; 1]. Thus, the maximum in z
occurs at the mid-point (x=1:5; y=0) and is equal to 1. The initial domain is taken to have
the projection [0; 1]× [−1; 1] in the (x; y) plane as in the case of the �ow inside the �at plate
depicted in Figure 3. The resulting �ow sequence is shown in Figure 12 for a period of 20
time units. The scale in the �gure indicates the front at six successive and equal intervals.
The remarkable feature of the �ow is that the �uid at the lateral walls surpassed the �uid in
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Figure 12. Transient �ow inside a curved thin cavity with initial rectangular domain. The fronts are
shown at equal time intervals over a period of 20 time units. Results are based on N=3.

Figure 13. Projection of the fronts of transient �ow in Figure 13 in the (x; y) plane.

the rest of the domain, and reached �rst the corners (x=2; y=±1; z=0). A more accurate
assessment is obtained by examining the projection of the fronts onto the (x; y) and (x; z)
planes, which are shown in Figures 13 and 14, respectively. The fact that the �uid at the
lateral walls surpasses the rest of the �uid is not surprising, since the middle portion of the
�uid must cover a larger distance as it climbs up inside the cavity as shown in Figure 14. What
is physically less obvious is the extent to which the �uid in the middle region is left behind.
The evolution of the front tip along x; Xmax(t), the contact point, Xc(t), and the maximum
height, Zmax(t), is shown in Figure 15. The results for Xmax and Xc should be compared to
those in Figures 8 and 9, respectively. It is interesting to observe that the behaviour of Xmax is
essentially linear with time, similarly to the �ow inside a �at cavity (Figure 8). There is even
a slight acceleration toward the end of the simulation. The contact point and the maximum
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Figure 14. Projection of the fronts of transient �ow in Figure 13 in the (x; z) plane.

Figure 15. Evolution of the front tip position, Xmax, the contact point position, Xc, along the lateral
walls, and maximum height, Zmax, with time for the transient �ow problem in Figure 13.

height, on the other hand, tend to accelerate initially, eventually decelerating. Their rate of
advance, however, remains higher than that of the front tip.
The �ow �eld at the front is further appreciated by examining the velocity vector at the

front. Figures 16 and 17 show the distributions of the axial and lateral velocity components
at the fronts of Figure 13, U (y; t) and V (y; t), respectively. The pro�les are shown over a
period of only 10 period units for clarity. The di�erence between the velocity of the front tip,
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Figure 16. Distribution of the axial velocity component, U (y; t), at the front for
0¡t¡10, for the �ow in Figure 13.

Figure 17. Distribution of the lateral velocity component, V (y; t), at the front for
0¡t¡10, for the �ow in Figure 13.

U (0; t), and that of the points of contact, U (±1; t), is signi�cant initially, but not as much
in Figure 10. This di�erence not only decreases with time, but the tip eventually begins to
recede relative to the lateral walls. Although the velocity tends to generally converge in the
long time everywhere, this rate of convergence is much smaller than in Figure 10. Similarly
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Figure 18. In�uence of cavity surface inclination on the evolution of the front tip position, Xmax(t).
Here � is the angle of inclination (in degrees).

to Figure 11, the lateral velocity component, V (y; t), is strongest initially, but is generally one
order of magnitude smaller than U (y; t), as depicted from Figure 17. The (U;V ) orbits in the
early stages are reminiscent of the limit cycle of a harmonic oscillator. They do not necessarily
decrease in their overall diameter as for previously. There is, however, a growing distortion of
the orbits, re�ecting a growth in non-linearity with time. The orbit width diminishes with time,
reaching a minimum, and increasing again. This indicates that the di�erence U (0; t)−U (±1; t),
between the axial velocity at the front tip and the lateral walls, decreases to zero, and then
increases again as the velocity at the walls exceeds that at the tip. Simultaneously, the lateral
velocity, V (y; t), exhibits an opposite behaviour. Indeed, the lateral �ow reaches maximum
strength when the axial �ow is at its minimum.

4.4. In�uence of cavity thickness

So far, all reported results have been restricted to a cavity of constant thickness, h(x)=1.
In this section, the in�uence of cavity thickness is examined. This in�uence can be intricate
given its local character. Three types of thickness distributions will be investigated, a linearly
diverging, linearly converging, and undulating cavity. Only variation along the x direction will
be examined.
Consider �rst the �ow inside a cavity of thickness h(x)= tan(�)x+1, where � is the angle

of inclination of the cavity walls. The in�uence of � on the �ow is illustrated in Figure 18,
which shows the evolution of the front tip for three values: �=+5; 0 and −5◦, corresponding
to a diverging, �at, and converging cavity, respectively. The �ow rate is the same for the three
con�gurations. As expected, the �gure shows that the �ow is weakened by cavity expansion
(�=+5◦).
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Figure 19. In�uence of cavity modulation amplitude, A, on the evolution of the
front tip position (a) and velocity (b), for !=6.

Figure 20. In�uence of cavity modulation wavenumber, !, on the evolution of the
front tip position (a) and velocity (b), for A=0:2.

For the �ow inside a cavity with wavy walls, the thickness is taken as h(x)=1+A sin(!x),
where A is the amplitude and ! is frequency. Figure 19 shows the in�uence of A∈[0; 0:3]
on the evolution of the front tip position, Xmax(t), and its velocity Um(t), for !=6. The case
A=0 corresponds to a cavity of constant thickness. The �gure shows that as A is increased
(from zero), the �ow behaves in an oscillatory manner with time. There does not seem to be
a �xed frequency in the �ow response, but the �ow appears to �uctuate mostly in the initial
stage. It is interesting to observe that the frequency of the �ow is a�ected by the amplitude
A. The e�ect of wall wavenumber is further assessed in Figure 20, which shows the in�uence
of !∈[0; 6] for A=0:5. Generally, the front tip moves at the same average rate as for a �ow
between �at walls. However, there is a sharp drop in rate as ! is increased (from zero), and
a gradual regain in the value of Xmax(t) as ! increases further.
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Figure 21. Transient �ow inside a modulated cavity (A=0:2 and !=6) with initial parabolic domain.
The fronts are shown at equal time intervals over a period of 5 time units.

A closer assessment of the in�uence of cavity modulation on the �ow dynamics is carried
out for A=0:2 and !=6, for a �uid with initial front given by x=2−y2. These conditions are
typically favourable for the development interesting dynamics as illustrated in Figures 21–23.
The evolution of the front is shown in Figure 21, which exhibits a strong spatial modulation
with respect to the y direction. The behaviour should be contrasted with that reported in
Figure 6. Cavity modulation leads to spatial and temporal modulations in the front shape
and location. The modulations become particularly obvious upon examination of the tip and
contact points, Xm(t) and Xc(t) in Figure 21. Both points tend to advance monotonically with
time as far as their positions are concerned. However, their rate of advancement changes with
time depending on whether the �uid is going through a cavity contraction or expansion. The
front modulations, however, completely disappear at the later stage. The velocity response is
reported at �ve di�erent time stages, t∈[1; 5]. The modulation in �ow is quite evident from
Figures 22 and 23, where the axial and transverse velocity components at the front are shown,
respectively.

5. CONCLUSION

The general lubrication formulation is extended for transient free-surface �ow inside a three-
dimensional cavity of arbitrary shape and thickness. A low-dimensional spectral approach
is proposed to solve the moving-boundary problem. In this work, the irregular and time-
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Figure 22. Distribution of the axial velocity component, U (y; t), at the front for
0¡t¡5, for the �ow in Figure 21.

Figure 23. Distribution of the lateral velocity component, V (y; t), at the front for
0¡t¡5, for the �ow in Figure 21.

dependent domain in the (x; y) plane is mapped onto the �xed rectangular domain (�; �)∈[0; 1]
× [−1; 1]. A modi�ed pressure is introduced. The transformed pressure equation is solved by
expanding the (modi�ed) pressure in Fourier series along the � direction. The expansion
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coe�cients are determined by solving the projected equations using a multiple-step �nite-
di�erence method. It is generally found that only few modes are needed to secure reasonable
accuracy and convergence. The validity of such low-dimensional description rests mainly on
the fact the front topography is simple in the problems covered in the study. This is, however,
expected to be generally true for more complex thin-cavity �ows since the front is relatively
always simple given the slip of the �ow that results from the lubrication hypothesis.
Three transient free-surface �ow con�gurations are examined. In all cases, the driving

pressure gradient is parabolic and maintained �xed at the cavity entrance. First, the �ow
inside a �at plate with the �uid occupying initially a rectangular domain is studied. In this
case, the �ow in the middle region tends to accelerate initially relative to the �ow at the
lateral walls. However, the slip at the walls eventually rendered the front straight again,
leading to a plug-�ow situation in the (x; y) plane. Second, the �ow inside the same plate
with initial parabolic domain is examined, which exhibits a strong lateral �ow initially. This
�ow, however, diminishes in intensity, leading to the straightening of the front with time. The
�ow inside a curved cavity (initially rectangular) shows that the �uid tends to advance more
rapidly than in the middle region, leaving a signi�cant void in this region. In addition, the
�ow inside a cavity of variable thickness is examined, for a cavity of linearly varying and
undulating thickness. The interplay between spatial and temporal modulations is particularly
emphasized in the latter con�guration.
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